
/-

Building the Scientific Modeling Assistant
An interactive enviromnent for specialized software design

RICHARD M. KELLER

AI RESEARCH BRANCH, MAIL STOP 244-17

NASA AMES RESEAaCH CENTER

MOFFETT FIELD, CA 94035

(_'IA S A- [_-_-iu 7 5 _ _) } U [L t)I:N G T H E S C I f_._I[!F IC

;_!-_:)ELIi_.,IGASS[SIA,_T: Ah.) [5.1T_.kRACTTV_7

,:_,,!V[_k{):i_':_E_,!T _:r=_i< SoEC[_LIL'::D Sf_FTWARF F)#::.SIGi_i

<;3153

N92-29175_

Unclas

0091511

h]]_A Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-91-13

May 1991

ToappearinProc. AAAI-91 Workshop on Automating Software Design

Building the Scientific Modeling Assistant:
An interactive environment for specialized software design

Richard M. Keller *

Artificial Intelligence Research Branch
NASA Ames Research Center

Mail Stop 244-17
Moffett Field, CA 94035-1000

keller@ptolemy.arc.nasa.gov

Abstract *

The construction of scientific software models is an
integral part of doing science, both within NASA

and within the scientific community at large.
Typically, model-building is a time-intensive and

painstaking process, involving the design of very
large, complex computer programs. Despite the
considerable expenditure of resources involved,

completed scientific models cannot easily be
distributed and shared with the larger scientific
community due to the low-level, idiosyncratic
nature of the implemented code. To address this

problem, we have initiated a research project aimed
at constructing a software tool called the Scientific
Modeling Assistant. This tool provides automated

assistance to the scientist in developing, using, and
sharing software models. In this paper, we describe
the Scientific Modeling Assistant, and also touch on
some human-machine interaction issues relevant to
building a successful tool of this type.

Introduction

Although model-building is an integral part of the
scientific enterprise, there is little computational support
available to the scientist performing this task. Without
such support, scientific model-building can be a time-
intensive and painstaking process, often involving the
design and development of very large, complex pieces of
software. Unfortunately, this software cannot easily be
distributed and shared with other scientists because the

implemented code is very low- level, idiosyncratic, and
difficult for anyone but the original scientist/programmer
to understand. In particular, the high-level structure and
content of the scientific model is not obvious from the

low-level code. FORTRAN and other general-purpose
programming languages do not include the scientific
terms and concepts that are natural to the scientist.
Furthermore, important modeling and data assumptions
are typically implicit in the low-level code that
implements the model. These implicit assumptions

* Employed under contract NAS2-13210 to Sterling Federal
Systems.

cannot be easily inspected or modified by a potential new
user. This is a significant deterrent to using another
scientist's model; the appropriateness of assumptions is
frequently the source of scientific debate.

To address these problems, the Scientific Modeling
Assistant Project at NASA Ames Research Center is

developing an interactive software design environment to

support the scientist in building, using, sharing, and
modifying scientific models (Keller et al. 1990). The
overall goal of the Scientific Modeling Assistant Project
is to study modeling as a human problem-solving
activity, and to provide computational support for
scientists engaged in this activity. We share some goals
in common with other work on automating various
aspects of scientific and engineering computation,
including (Kant et al. 1990, Atwood et al. 1990,
Barstow 1984, 1985, Robertson et al. 1989, 1991,
Abelson et al. 1989).

Scientific model-building is by its very nature
experimental and incremental. The scientist begins with
a particular observation he or she wishes to explain, and
a set of experimental data that may be used to explain
the observation. Model-building is a theory formation
process in which the scientist attempts to link the data
with the observation via a set of intermediary
computations. Sometimes there are many different
possible theories for explaining the observation, and the
scientist must choose the "best" theory according to a set
of goodness criteria. Other times, it may turn out that
the data do not satisfactorily explain the observation, and
new data must be collected. Although one of our
longterm goals is to develop fully automated scientific
theory formation systems, our initial goal has been more

modest -- to provide intelligent assistance to support
human scientists engaged in model-building and theory
formation. The crucial distinction here involves degree
of autonomy; a fully automated system makes all
decisions without scientist intervention, whereas an
"intelligent assistant" offers suggestions, but leaves the
scientist firmly in control.

We view scientific model-building as a specialized type
of software design activity that is inherently iterative and
interactive, The scientist does not begin with a set of
formal SlXx:ificatious for a given model. Instead, he or

shebeginswitha setof observations, and attempts to
develop specifications for a model that will account for

those observations. Whereas an initial model may
account for the observations, it may fail to adequately
explain subsequent observations. In this case, the initial
specifications must be revised and a new model

generated. This process continues as long as new
observations are forthcoming.

To facilitate interactive model-building, our current

software prototype includes an intelligent graphical
interface, a high-level domain-specific modeling
language, a library of physics equations and experimental
datasets, and a suite of data display facilities. Rather
than construct models using a conventional

programming language, scientists will use our graphical
interface to "program" visually using a more natural
high-level data flow modeling language. The terms in

this language involve concepts (e.g., quantities,
equations, and datasets) that are familiar to the scientist.

In constructing this tool, we are using a variety of
advanced software techniques, including AI knowledge
representation, automatic programming and truth
maintenance techniques, as well as techniques from
object-oriented programming, graphical interfaces, and
visualization.

As a testbed for this research, we have developed a
software prototype in the domain of planetary
atmospheric modeling. This prototype is being used to
reconstruct a model of the thermal and radiative structure

of Titan's atmosphere that was originally developed in
FORTRAN (McKay, Pollack & Courtin 1989). Our
longterm plan is to make the software assistant a viable

tool to support future NASA planetary atmospheric
modeling activities, including those related to the

upcoming Cassini mission to the Saturn system.
Although the current prototype is tied to the planetary
atmospheres modeling domain, we are also investigating
the applicability of these ideas to ecological modeling,
where we are studying a model of the carbon, water, and
nitrogen cycles in a forest ecosystem (Running &
Coughlin 1988). By studying two different application
domains, we hope to gain insight that will ultimately
enable us to develop a general- purpose scientific
modeling "shell'. The shell would be instantiated for a

particular modeling task by supplying domain-specific
knowledge.

A Focal Problem:
Titan Atmospheric Modeling

Our initial research has focused on a small portion of the
overall Titan atmospheric model -- the gas composition
portion. The purpose of the gas composition portion is
to develop a profile of Titan's atmosphere that describes
the pressure, temperature, and density of gases at various
altitudes above its surface. This problem is
underconstrained due to the shortage of empirical data on
Titan. The major source of relevant experimental data is
the Voyager-I flyby of Titan back in November 1980.
As Voyager-I reached the far side of Titan, it sent back
radio waves that passed through Titan's atmosphere and
then on to receiving stations on Earth. Due to the
density of gases in the atmosphere, the radio waves were

refracted slightly as they passed through the atmosphere.
The amount of refraction was measured at different

altitudes above the surface. This refractivity data serves
as a starting point for inducing the desired atmospheric
profile in the Titan gas composition model.

In brief, the atmospheric profile can be determined as

follows (see Figure 1). First, for each atmospheric point
profiled, the Voyager-I refractivity data (R) is used to
compute the number-density (ND) of the gases at that
altitude. The number-density of a mixture of gases is
defined as the number of molecules per volume of the

mixture. Assuming the identity and relative percentages
of gases in a mixture is known, the number-density can
be computed as a function of refractivity. Next, using
the molecular weight of the various gases in that
mixture, the mass-density (RHO: mass per volume of
mixture) can be computed from the number-density. The
hydrostatic law can then be used to determine the

pressure (P) from the mass-density by numerically
integrating the weight of the atmosphere above each
profile point. Finally, the temperature (T) can be
determined from the mass-density and the pressure by
applying an equation of state, such as the ideal gas
equation. Figure 1 illustrates a level of abstraction at
which a physicist might describe the problem, and is far
more comprehensible than the corresponding FORTRAN
code. Our system's graphical interface and modeling
facilities permit a physicist to construct and manipulate
models at this level of abstraction.

Refractivity data Number density

R, _ ND

refractlvltyl number-denslty/
number-denslty mass-denslty

relutlon relatlon

Mass density Pressure Temperature

RHO _ P _ T

hydrostatic Ideal
law gas

law

Figure 1: Determining the atmospheric profile

Initial Prototype

Our prototype enables scientists to construct simple
models (such as the Titan gas composition sub-model
described above), to modify parts of a model, to execute
a model, and to perform analyses on the results. Our

approach has been to build a visual programming tool
that allows a user to construct models graphically using
a visual data-flow language. The resulting model is "run"

by executing the constructed data flow graph.

For the purposes of our initial prototype, we have
conceptualized model-building as a process of linking
uncomputed physical variables to computed variables

using computational transformations. For example, the
process of linking the input Voyager-I refractivity data to
the output ideal gas temperature is accomplished by the
sequence of transformations illustrated in Figure 1.
Conceptually, each transformation takes as input a set of
variables and produces a single variable as output.
Physics equations and subroutines are two kinds of

computational transformations supported in the current
system. Physics forms the basis for atmospheric
modeling, so the use of explicit physics equations is
natural in this context The introduction of subroutines

is motivated by the fact that in building models,
scientists often makes use of program code that has been
developed elsewhere. Examples range from standard

numeric integration and data interpolation packages to
complex scientific models developed by other scientists.
The details of these imported subroutines are assumed to

be outside the scope and interest of the scientist-user, but
can be incorporated into their models as 'black boxes'.

In our current prototype, the process of linking variables
using transformations is accomplished via a simple
backchaining procedure. In this backchaining process,
the user In'st selects a target physical variable they wish
to calculate. Then the system presents the user with a set

of transformations that can be used to compute the
desired variable. The user selects one of these
transformations, and the system checks to see whether
all the input variables required by this transformation
have already been calculated. If so, the transformation
fires and the desired output variable is computed; ff not,
the backchaining process recurses for each of the

uncomputed variables. During this process, the graphical
interface displays a dependency-tree visualization of the
current model as it is being builL This visualization is
similar to Figure 1, but in general depicts a more
complex network of variables and transformations. The
history of user modeling steps is recorded and maintained
by the system, and can be displayed at any time.

The prototype features a Macintosh-like interface with
pull-down menus and windows. The interface enables
the user to visualize the model and its associated
variables in a variety of formats, including plotted

graphs and data tables for displaying computed variables.
The interface provides various functions to manage the
models stored in a scientist's workspace. For example,
the user can switch the current focus of the model-

building activity to a different model and/or workspace,
and can retrieve old models, initiate new models, or
delete existing models. Also, the interface provides a
facility for applying user- defined tests of model viability
to the current model under development. For
atmospheric modeling, one such test is a test for

atmospheric stability. If the temperature gradient
predicted by a model is too steep, the amaosphere will be
inherently unstable -- and this violates normal

expectations. So the model testing facility provides the
scientist with valuable feedback on whether the current
model needs further refinement.

Sample Session

To give the flavor of how models are built and extended

using our tool, this section illustrates a portion of a
model construction scenario in some detail.

For the purposes of this discussion, we will assume that
the user has already built an atmospheric model, and
wishes to extend the model. In particular, we will
assume the scientist has already constructed a model that
determines pressure from refractivity data (see first 3
steps in Figure 1). Now the scientist wishes to extend
the model to compute temperature, as well. This addition

is accomplished with the following steps:

•_S.lglLI.:The user recalls the incomplete model stored in

his or her workspace. A visualization of the current

model is then displayed to the user (see Figure 2).
The tree-like structure shows the transformations
applied thus far in the model, as well as the
associated input and output variables, and their

interdependencies. For example, reading down from
the root of the tree, we see that the last variable

computed was P-l, a pressure variable. P-1 was
computed using an instance of the hydrostatic law
(hydrostatic-law-I) based on the input values G-1 ---
the gravitational force at a particular point in the
atmosphere -- and RHO-1 -- the mass-density at that
point. RHO-1 was in turn computed from an equation
relating number-density and mass-density (density-
from-hal-I). The input number-density (total-rid-I)
was computed using the relationship between
number-density, refractivity, and the relative

percentages of each of the gases in the atmosphere
(e.g., mim'ng-ratio.ch4.1). The variables at the leaves
of the tree are primitive inputs to the model, and are
assumed to be given. (Note that the boxed variables
in the tree appear more than once in different places.)

3

"_,9-.2,: The user selects temperature from the variable

menu (see Figure 3) indicating she or he next wishes
to compute temperatttre within the model.

•_L.3.: In response to the user's selection of a physical
variable, the system displays a menu of all

transformations that can be applied to compute that
variable (see Figure 4). This is the beginning of a
backchaining process initiated to compute
temperature.

"_¢JZ_.: The user chooses one of the transformations --

in this case, a non-ideal gas equation of state. (This
non-ideal gas equation corrects the ideal gas
temperature using an empirically-derived correction
factor.) The user's choice is echoed in the history
window, and the system displays the transformation

in the equation window for verification (see

Figure 5). In the equation window, the complete
equation is displayed along with the symbols used
and their meanings. At this point, if the user has
made an incorrect choice, the interaction can be

aboneA and different choice made. The system makes
a preliminary attempt to bind the symbols in the
equation to known variables in the current model, and

these bindings are displayed in the equation
window subject to user approval.

Simultaneously, the system displays the status of the
backchaining process in the backchaining status
window (Figure 5). Here the temperature variable to

be computed (T.1) is shown as an output of an
instance of the non-ideal gas equation of state (non-
ideal-eqm-state.n2-1). The ".9" indicates that the value

of the T-1 variable has yet to be computed.

P-t

'II'HYDROSTATIC-LAW- le

0-t "_"_flH - 1

I o, I
eQRAVITY'IrQ UATION'le • ENSTY-...._..__Ffl0H-__.._.N0-1e

NIJ_'T

eNEAN-HOLEC-WT!CALC-CH4 -N2- le

HIXlNG'I_O'GH4" 11

OSlOHA'HIXIN(]'RATIO$-i$- 1-CH4.N2. lq)

IHIx'N°'_l'°'cml" _1

TOT-_-"O- 1

eRFFItACTIVITY'HIXlHrL'RATIOS'Iti[LATION-CH4-N2 - to

pIIXINO'RAT_-_ IVlTY- 1

Figure 2: Dependency-tree visualization of incomplete atmospheric model

'HYSICAL VARIABLE

refractivity
number--density
gravity
pressure
relative-humidity
saturation-mixing-ratio

vapor-pressure
composition
mixing-ratio

total-number-density
molec-weight
mole-molecular-weight
density
temperature
other

NEW

Figure 3: Variable menu

ideal-gas-eqtn-state i
non-ideal-eqtn-state-n2:

vapo__._r-pressure-ch4-1aw

Figure 4: Transformation menu

4

"_d2._: Because there are two temperature symbols in
the non-ideal gas equation (TI, an ideal gas
temperature, and T, the corrected non=ideal gas
temperature), the user is asked to select one of these
symbols as the output to the equation. The system
will manipulate the equation so that the symbol to be
computed is on the left hand side of the equal sign in
the equation.

•_I._L._: After the bindings have been verified and the

output variable has been selected, the system updates
the backchaining status window to display the
selected bindings (Figure 6). Note that at this point,
the new temperature variable (T-l) has been connected
to the original incomplete model (shown in Figure 2)
by means of the instantiated pressure variable P-l,
which was introduced by the non-ideal gas equation of
state. Because the ideal gas temperature (TI.1) has yet
to be computed, the system now begins recursively
backchaining on this variable.

•_: As in Step 3, the system prompts the user to
select the transformation to be used in computing the
ideal gas temperature. This time the user picks the
ideal gas equation, rather than the non-ideal gas
equation. The inputs to this equation are number-
density and pressure, which have already been
computed as part of the original incomplete model.
The system binds these variables and the

backchaining process terminates. The system now
percolates the data values from the leaves of the tree
up to the root to compute first the ideal gas
temperature (TI-1), and finally the non-ideal gas
temperature (T.1).

•_,Ik._: At this point, the user may choose to plot the
value of non-ideal temperature as a function of
altitude (Figure 7) by making an appropriate selection
in the display menu. Or the user may decide to
apply a test of model viability from the test menu.
For example, the saturation law specifies that the
mixing ratio of a given gas in the amaosphere must
be less than the saturation mixing ratio for that gas.
In other words, gases are not expected to supersaturate
under normal circumstances. The test selected by the
user appears in the equation window (Figure 8a). The
system applies the test and reports whether it is
satisfied by the results produced by the current model.
In this case, the test fails, as is illustrated by the plot
of mixing ratio and saturation mixing ratio versus
altitude (Figure 8b), which the user has requested.
Note in the region between 5 and 50 kilometers
above the surface, the saturation mixing ratio (dark
line) is less than the 5% fixed mixing ratio (light
vertical line) that the user has defined in the model.

OPTIONS SAVE DISPLAY INPUT VARIABLE EOUATION RUN TEST HELP]_i__i),_

Deleted moclel OEMO-2-GAS

MoOIrL-CLAS$: GAS-COMPO$ITK)N

MODI[L-NAMI[: DIrMO'2°GA8

[QUATION: NON-10[AL-IrQTN-STATE-N2

(IrQ T (* TI (+ 1 (/ (* A (/ P 10.0)) ([XPT TI B)))))

change-binding
ABORT
ok
change-equation

tl_e current bincling for equltion

?T*t

IH-STATIr-N2o le

_] Bi(L_LuJ_lz_l_l; r_1H:() ; r:_I / I I l [rl_t _! | Ik_&_ J I Ei I | | ;k_

?T'I

eNON-IDEAL-EQTN- 5 TAT (-N2- le

• HYDROSTATIC-LAW- le

Q'I -1

[.DENSITY-IRON-ND- 1.
eORAVITY-EQUATION- 10

eHEAH-ffOLEC-W T-CALC-CH4-N2- IO

HIXIN(]-ItA_ _TIO*N2-11

eSIOHA-HiXINO-P.ATIOS-IS- 1 -CH4-H2- IO

_qIXINO-RA_IO-CH4-11

ToT_ .o 1

eREFRACTIVITY-NIXINQ-RAIlOS-RI[LAT ION-CH4 -NZ* le

_ f ,XiHO-flAY_-_lVlTY- i

Figure 6: Updated backchaining status window

Figure 7: Plot of non-ideal temperature versus altitude

6

i _t 1Ir:l I I I I _ It=yell1111 t h-

!:_'EQUATION to De Doun(l:

((= MIXING-RATIO SATURATION-MIXING-RATIO)

mlxlng ratio must be less than saturation mixing-ratio

I_|SATURATION'MIXING-flATIO: value: ??? TO BE COMPUTED

i1_ saturationmixing-ratio of a gas at I point or points

II_MIXING'RATIO: value: MIXING-RATIO-CH4-t

I1_ mixing-ratio of a gas at a point or points

iiBoAs:va,ue:oN4
I1_ pt(s) where mixing-ratio is to be computed

lINZ: value: REFERENCE-R._CE-1

I!! pt(s) where mixing-ratio is to be computed

Figure 8a: Saturation law

I

1

I

(u =qm=w mt m) I_lo -I_'_o-_*- t, IArtttA new -U_mI=_tATIO. L

Figure 8b: Plot of mixing ratio (light line)
and saturation mixing ratio (dark line)

versus altitude

Status and Evaluation

To date, we have focused on model construction rather

than model modification, although the tool supports
simple types of changes to existing models. We have
begun testing the prototype with atmospheric scientist
users, and are in the process of evaluating its strengths
and weaknesse&

The preliminary results of this evaluation indicate that

overall, users find the system's dataflow modeling
paradigm to be extremely useful both in conceptualizing
models and in speeding their implementation. However,
we need to significantly improve certain system
limitations before the tool can be "field tested". In

particular, our evaluation has highlighted the following
three limitations, which we are addressing in a new
implementation:

Limitation 1: The system's ability to make intelligent

choices and suggestions is hampered by its lack of
sufficient background physics and atmospheric sciences
knowledge.

Fundamentally, the quality of the tool's interaction with
a planetary scientist is determined by the extent of the
system's knowledge about the modeling task and the
related atmospheric physics. If the current system had a
greater understanding of atmospheric modeling, it would
be capable of providing an additional level of support for
the modeling task. Specifically, additional knowledge
would enable the system to present the user with more

intelligent choices at decision points. By making
"intelligent choices", we mean the system should
provide better system defaults, more intelligent selection
of data structures, better ordering of user options, and a
reduced (i.e., faltered) set of options.

There are several places where more intelligent choices
are desirable in the current system. For example, the
system Currently displays a nearly exhaustive list of
physical variables and transformations when the user

clicks on the variable or equation menus, respectively.
As the number of transformations and variables

increases, this exhaustive display will cease to be a
viable option. The system must intelligently filter the
set of transformations or variables that are relevant in the

cmrent modeling context.1

Another place where the system must make intelligent
choices is in binding equation symbols tO physical
variables. For example, when the user chooses to apply
the ideal gas equation to compute temperature, the
system must bind the symbols for pressure and number-
density to previously-computed physical variables. If a
number of different pressure and number-density
variables have been computed in the current model, the
system must determine which of these variables the user

intends to bind to the equation symbols. If the system
"understands" the ideal gas equation, it can apply certain
constraints to ensure necessary consistency among its
choices. For instance, to apply the ideal gas equation

properly, the selected pressure and number-density
variables must pertain to the same gas mixture at the
same location. Any attempt to apply the equation to a
pressure at the Titan's surface and a number-density at
200 meters above the surface should be recognized and
rejected as nonsensical. This type of constraint is
normally implicit in the computer encoding of the

1Actually, the system currently performs some intelligent
_ransformation and variable f'dtering. For example, during
blckchalning, the system filter= the set of transformations
displayed so that only those involving the backchained
variable are shown.

model. It is precisely this implicit encoding that makes

the creation, modification, and sharing of these programs
with colleagues so difficult. Explicit representation of
domain knowledge and reasoning processes is an
approach to solving these problems.

An atmospheric scientist brings a variety of different

kinds of knowledge to bear in approaching the modeling
task. This includes both domain knowledge, such as
knowledge about physical variables, physics equations,
and the structure of atmospheres, and modeling
knowledge, such as various strategies and heuristics for
atmospheric modeling, and various constraints and

assumptions pertaining to the modeling process. We

believe that representing knowledge of this type is the
key to developing a useful modeling assistant.

i_: The current interface is too rigid, stylized,

and confusing for users, who desire a more fluid, open-
ended interaction with the system.

Rather than be forced into a backward-chaining mode of
interaction, where the user is locked into a strict goal-
directed design mode, we need to provide for more
flexibility and fluidity. Our scientists expressed a desire

to construct models piecemeal, possibly working on
unrelated portions of a model in succession, and then

piecing together the results. We are currently designing a
Macintosh-like wiring-diagram interface that will
facilitate this mode of design.

Limitation 3:The current system lacks portability.

To be successful, our system must be used by a
community of scientists in a variety of settings. Our
prototype system is implemented using a proprietary
piece of software (Intellicorp's KEE) and runs on an
expensive, specialized Lisp machine. Our new system is
being written in CommonLisp/CLOSICLIM, and will

run on a variety of platforms, including a Sun
Sparcstation and a Macintosh II, as well as a Symbolics
workstation.

Human-Machine Interaction Issues

In developing our prototype system, we encountered a
number of critical issues relevant to human-machine
communication. Some of these issues are associated
with acquiring, maintaining, and explaining the system's
domain knowledge; others stem from the need to

communicate with specialized domain experts who may
be either non- programmers or relatively unsophisticated
programmers; still others can be aUributed to the
inherently incremental nature of the specification
acquisition process in this design domain. Although we
provide no definitive answers, we raise some of the

issues here, and look forward to addressing them in future
versions of our Scientific Modeling Assistant.

Complexity

Scientific models can be very complex pieces of
software. Both the original designer and those who
subsequently inspect, use, and modify the model will
need assistance in understanding how the model
functions and in dealing with its complexity. We intend

to make use of several methods for managing
complexity:

• Our high-level data flow language provide a level of
abstraction that helps the scientist understand the essence

of the model without focusing on implementation details
involving data structures and control.

• Our interface will support hierarchical structuring of
the data flow graphs, allowing the scientist to "package"
portions of the model into larger chunks and hide detail.

• The interface should present multiple, selective views
of the software, depending on the user's interests. A

scientist interested in hydrodynamic aspects of an
ecosystem model should not have to view those parts of
the model dealing with thermodynamic computations.

Information Access

During interactive design, the user needs access to

information necessary for completing the design. For
example, during the model-building process the scientist
frequently requires access to the following type of
information:

• Data Transformations (equations, subroutines, and
auxiliary computational models): Transformations are

the building blocks of scientific models. They perform
computation on the input data to derive the primary
observation of interest, creating intermediate variables
along the way. The number of available transformations

in a full-blown operational scientific modeling
environment will be significant, and any such system
will have to provide methods for indexing and retrieving
these transformations for the use_.

• Domain knowledge: A system will have to provide the
user a means of inspecting the system's domain

knowledge base - both to access information during the
course of design ('What is the atomic weight of
nitrogen.?') and to verify and change the domain
knowledge.

• Symbol manipulation packages: Aside from accessing
declarative knowledge, the scientist requires access to
auxiliary computational support, such as the kind

provided by symbolic "scratchpads", such as
Mathematica.

• Data visualization: The scientist frequently plots the
outcome of the model in order to ascertain its quality. In
general, the scientist needs access to facilities for

visualizing the data that is input to, and generated by,
the model under design.

Knowledge Acquisition

Knowledge acquisition is a crucial function of any
domain-specific software design system. Unless the
domain knowledge is completely circumscribed and
smile, it will be necessary for the user to have the

capability of updating and extending the system's domain
knowledge. In our ease, we use an object-oriented,
frame-base knowledge representation system to encode
domain knowledge. If a scientist wants to add a new
scientific equation to the system, he or she must define
the semantics of that equation in terms of the domain

knowledge by identifying the relevant objects, attributes,
and constraints pertaining to the equation. Thus the user

must be able to easily browse the domain knowledge.
As a more difficult knowledge acquisition problem,
consider that the user may want to change the very
underpinnings of a given model, for example going from
a smile to a dynamic model or from a two-dimenilonal to

three-dimentional spatial model. Enabling the user to
effect these types of fundamental representational
changes is a very difficult knowledge restructuring
problem.

Design Rationale

In building a scientific model, it is particularly
important to record the design rationale and assumptions
underlying the model. This is crucial for reuse; other
scientists will not use a given model unless they
understand the appropriateness of those assumptions.
For example, the Titan atmospheric model assumes a

well-mixed composition of gases in the atmosphere.
Many of the model's calculations are based on this
assumption, and it is not possible to use the model

properly without an awareness of this assumption. In
particular, this assumption may not be appropriate for a
scientist studying atmospheric inversion processes.
Access to assumptions is also crucial during the design
process when they may be violated, Our system should
record and maintain modeling assumptions and notify the
user if underlying assumptions are violated by their
design actions.

Interaction Vocabulary

To encourage the use of specialized software design
environments, such as the Scientific Modeling
Assistant, it is important to communicate with the user

in their own vocabulary and to avoid relying on
unfamiliar formal constructs (such as predicate calculus,
set theory) from outside their domain of expertise. This

serves to reduce the overhead in learning and feeling
comfortable with a new type of software environment.

Related Research

There are several pieces of relevant research on the

construction of scientific models and modeling and
analysis tools in various domains:

• Barstow's work on the Fnix system (Barstow 1984,
1985) is quite close in spirit to our work. Fnix is a

domain-specific automatic programming system

constructed to assist in generating oil well log
interpretation software. The system was designed for
direct use by petroleum scientists, who use it to
construct geological models in the form of a set of
quantitative equations relating geological parameters of
interest. Like our Scientific Modeling Assistant, Fnix
makes extensive use of scientific domain knowledge, in
addition to programming knowledge. Fnix, however,
can generate a much wider class of programs due to its
less restrictive specification language coupled with
general transformational methods.

• In a similar vein, (Kant et al. 1990) describes the

SINAPSE system under development at Schlumberger.
SINAPSE helps scientist perform mathematical model-
building in the context of data interpretation tasks such

as seismic interpretation. The system's domain of
expertise is quite narrow, and specifically covers the
generation of code for seismic models phrased as finite
diffexence equations.

• A group at M.I.T. describes a suite of intelligent
programs developed for automatic preparation, execution,
and control of numerical experiments (Abelson et al.

1989). These programs have been combined in a package
called the "Kineticist's Workbench" to produce a
sophisticated tool for modeling and analysis of
dynamical systems.

• The Reason system supports sophisticated analysis of
high energy physics data using a dataflow language and
an interactive graphical intm'face (Atwood et aL 1990).

• Finally, (Robertson et al. 1989, 1990) report on the
ECO system developed at the University of Edinburgh to
facilitate the construction of ecological simulation
models using a sorted logic representation.

Summary

This paper has described a new research effort underway
at NASA Ames Research Center to construct a Scientific

Modeling Assistant. Scientific model-building is an

inherently interactive, incremental software design
process that constitutes a kind of theory-formation
activity. We described several human-machine

interaction issues related to the development of this

interactive scientific software design and development
environment.

Acknowledgments

This research was co-funded by NASA's Office of Space
Science and Applications, and the Office of Aeronautics
and Exploration Technology. I wish to thank the other

members of the Scientific Modeling Assistant Project
for their intellectual contribution to the ideas expressed
in this paper. These members include Michael Sims,
Christopher McKay, Esther Podolak, Michal Rimon,
and David Thompson.

[McKay, Pollack, & Courtin 1989] C.P.McKay,
J.B.Pollack & R.Courtin, "The Thermal Structure of

Titan's Atmosphere", Icarus, Vol.80:23-53, 1989.

[Robertson et al. 1989] D.Robertson, A.Bundy,
M.Uschold, and R.Muetzelfeldt, "The ECO Program

Construction System: ways of increasing its
representational power and their effects on the user

interface', lntl.l. Man- Machine Studies, Vol. 31:1-
26, 1989.

[Robertson et al. 1991] D.Robinson, A.Bundy,
R.Muetzelfeldt, M.Haggith & M. Uschold, Eco-

Logic: Logic-Based Approaches to Ecological
Modelling, MIT Press, 1991.

[Running & Coughlan 1988] S.W.Running &
J.C.Coughlan, "A General Model of Forest

Ecosystem Processes for Regional Applications: I.
Hydrologic Balance, Canopy Gas Exchange and
Primary Production Processes", Ecological
Modelling, Vol. 42: 125-154, 1988.

References

[Abelson et al. 1989] H. Abelson, M. Eisenberg, M.
Halfant, J.Katzenelson, E.Sacks, G.J.Sussman,

J.Wisdom, and K.Yip, "Intelligence in Scientific
Computing", Comm. ACM, 32(5):546-562, May
1989.

[Atwood et al. 1990] W.Atwood, R.Blankenbecler,
P.F.Kunz, B.Mours & A.Weir, "The Reason
Project", Stanford Linear Accelerator Center technical
report #SLAC-PUB-5242, April 1990.

[Barstow 1984] D.Barstow, "A Perspective on
Automatic Programming", A/ Magazine, Spring
1984.

[Barstow 1985] D.R.Barstow, "Domain-Specific
Automatic Programming", IEEE Transactions on
Software Engineering, Vol. SE-11 (11), November
1985.

[Kant et al. 1990] E.Kant, F.Daube, W.MacGregor,
J.Wald,'Synthesis of Mathematical Modeling
Programs", Schlumberger Lab for Computer Science
tech report # TR-90-6, February 1990.

[Keller et al. 1990] R.M.Keller, M.H.Sims, E.Podolak,
C.P.McKay & D.E.Thompson, "Proposal for
Constructing an Advanced Software Tool for
Planetary Atmospheric Modeling'. AI Research
Branch tech report #RIA-90-03-20-1, NASA Ames
Research Center, March 1990.

10

